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a b s t r a c t 

Marketing messages are most effective if they reach the right customers. Deciding which 

customers to contact is an important task in campaign planning. The paper focuses on em- 

pirical targeting models. We argue that common practices to develop such models do not 

account sufficiently for business goals. To remedy this, we propose profit-conscious en- 

semble selection, a modeling framework that integrates statistical learning principles and 

business objectives in the form of campaign profit maximization. Studying the interplay 

between data-driven learning methods and their business value in real-world application 

contexts, the paper contributes to the emerging field of profit analytics and provides orig- 

inal insights how to implement profit analytics in marketing. The paper also estimates the 

degree to which profit-concious modeling adds to the bottom line. The results of a com- 

prehensive empirical study confirm the business value of the proposed ensemble learning 

framework in that it recommends substantially more profitable target groups than several 

benchmarks. 
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1. Introduction 

Business analytics revolutionizes the face of decision support. Skepticism toward formal decision aids used to be

widespread among executives. Today, we witness an unprecedented interest in quantitative decision aids and analytic mod-

els. Vast amounts of data, powerful pattern extraction algorithms, and easy to use software systems fuel this development

and promise to improve management support. The paper concentrates on decision support in marketing campaign plan-

ning. Campaign planners need to answer three questions [9] : when to make an offer (timing), how often to make an offer

(frequency), and whom to contact (target group selection). We focus on the target group selection problem, which has

been studied in the direct marketing and churn management literature [e.g., [43] . To target marketing offers, companies

use response models, which estimate acceptance probabilities for individual customers. Corresponding predictions facilitate

targeting the most likely responders. 

Modeling response behavior on the level of an individual customer is a popular use case of business analytics in mar-

keting. Developments in the scope of big data have a sizeable impact on customer response modeling, which we discuss

along the well-known four V’s volume, variety, velocity, and value that characterize big data. First, the volume dimension
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implies that companies have more detailed records of past customer behavior and information related to customer pref-

erences [27] . Such behavioral information enters response models in the form of novel attributes from which acceptance

probability predictions are eventually derived. Second, the variety dimension refers to new and often unstructured sources

of data, which companies can unlock for gaining business insight. The use of text analytics to extract information from

product reviews, postings in social media, etc. illustrates this approach and contributes attitudinal information, which fur-

ther expands to scope of customer characteristics that enter response models. Third, the velocity dimension postulates that

novel data arrives with higher speed and implies a necessity to reduce the latency of decision-making. For example, re-

sponse model-based targeting decisions in digital advertisement must be made in real-time and the number of application

settings that also require real-time decision-making tends to increase in the big data era. Finally, there is much evidence of

big data creating considerable value for marketing, which emerges from enhanced decision-making [35] . 

Response models use a variety of prediction methods including, artificial neural networks, support vector machines, or

tree-based approaches. However, prediction methods are designed for generality and support decision-making in many fields

such as credit scoring [25] and fraud detection [40] . Developing a prediction model involves minimizing a statistical loss

function on a labeled training sample [e.g., [17] . We argue that using an off-the-shelf method for customer targeting suffers a

limitation. Contextual information related to the actual decision task does not enter model development. Budget constraints,

customer lifetime value, parallel campaigns – relevant information in campaign planning – have no effect on the estimation

of the targeting model. Therefore, the objective of the paper is to develop and test a contextualized modeling framework

that accounts for business objectives during model development. 

Current trends in marketing support this objective. Big data facilitates an increasing degree of personalization in market-

ing communication [e.g., [15] . Likewise, an increasing amount of information is distributed through digital channels [e.g., [8] .

These developments amplify the scale of targeting decisions and require decision-making in real-time. Therefore, marketers

need to automate targeting decisions. A high recognition of business goals during model development seems especially

important when targeting models operate in a self-governed manner. More generally, our focus on the business value of

empirical decision support models echoes the recent call for a higher recognition of managerial objectives in modeling,

which gave rise to the emerging field of profit analytics [e.g., [24] . 

The contribution of the paper to the literature is threefold. First, we propose a new modeling methodology for profit-

conscious ensemble selection (PCES). We design PCES in such a way that it integrates established principles of statistical

inference with marketing objectives in customer targeting. A related design goal is to mimic the way in managers contex-

tualize recommendation from model-based decision aids [10] . PCES-based targeting models are contextualized in the sense

that they account for marketing objectives and constraints at earlier stages of the model development process than existing

approaches. We hypothesize that a contextualization of the model development process improves the quality of targeting

decisions. 

The second contribution stems from a comprehensive empirical analysis, which includes twenty-five real-world mar- 

keting data sets from different industries, of the effectiveness of alternative paradigms toward customer targeting. Beyond

comparing an arsenal of alternative targeting models, we contrast three fundamentally different modeling philosophies. The

first approach, which we refer to as profit-agnostic, relies on statistical learning and develops targeting models through min-

imizing a statistical loss-function [17] . We consider this approach to represent standard practice in predictive analytics. The

second approach derives targeting models from maximizing business performance while disregarding statistical learning 

principles. We consider this approach an extreme form of profit analytics and call corresponding models profit-centered. The

third approach represents a hybrid solution in the form of PCES, which balances between statistical and economic consider-

ations. This three-facetted empirical design provides novel insight concerning the relative merits of fundamentally different

approaches toward predictive modeling. 

The empirical design also facilitates the third and last contribution of the paper. In particular, the paper provides an

estimate of the degree to which incorporating business goals into prediction model development raises the business perfor-

mance (e.g., return on marketing) of model-based (targeting) decisions. We achieve this through estimating the campaign

profit that emerges from model-based targeting and the marginal profit of PCES-based targeting, respectively. Corresponding

results provides a clear and managerially meaningful measure of the business value of a targeting model and the extent to

which PCES improves decision quality. 

2. Background and related work 

Related work splits into three streams. First, prior work on decision support systems (DSS) provide theoretical foun-

dations ( Stream 1 ). Second, related studies in forecasting and machine learning consider the interplay between predictive

models and their value implications in economic contexts but differ in the methodology they employ and applications they

consider ( Stream 2 ). We sketch the connections and differences to these streams in the following. Subsequently, we discuss

previous research on marketing decision support and customer targeting ( Stream 3 ), which is particularly related to this

study. 

Papers from Stream 1 examine the antecedents of (model-based) DSS effectiveness and highlight the importance of a

DSS exhibiting high fit for the decision task. However, managers can mitigate a lack of fit if given an opportunity to post-

process DSS recommendations [10] . Specifically, managers’ decision-making is guided by a mental model that enables them

to appraise DSS outputs in awareness of a specific problem context, connect DSS outputs to decision quality, and, in this
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Fig. 1. Simplified process of prediction model development without feedback loops between stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

way, correct for misleading information from an inadequate model [10] . This theory shows the merit of human supervision

in model-based decision support and provides a design goal for the PCES approach developed here. We strive to combine

the efficiency of automated, model-based decision-making with the ability of managers to improve decision quality through

using contextual, task-specific information. 

Prior work in Stream 2 examines whether and when the development of data-driven prediction methods should account

for economic objectives. Granger [16] was the first to criticize the use of quadratic loss functions in forecasting and to

propose loss functions that penalize positive and negative residuals differently. Subsequent studies contribute further the-

oretical insights and empirical evidence concerning asymmetric loss functions in forecasting [e.g., [4] . The cost-sensitive

learning literature also studies asymmetric cost of error functions but focuses on classification models [e.g., [42] . 

Research from Stream 2 inspires the proposed PCES approach. PCES also employs non-standard, asymmetric loss functions

for the development and assessment of predictive models. The main differences lie in the methodology and application. We

focus on multivariate machine learning models as opposed to univariate time series models in forecasting. Our focus on

decision problems in marketing campaign planning also implies that we study a different business objective (i.e., campaign

profit). Specifically, the different errors in campaign planning are soliciting customers who do not respond and failing to

contact customers who would respond (e.g., purchase an item) otherwise. This perspective on model errors is similar to

cost-sensitive learning. Cost-sensitive learning, however, aims at generality. While generality is a goal worth pursuing, a

DSS approach that focuses on a specific application context better reflects the unique characteristics and requirements of

this context [23] . PCES is such an approach for decisions in the scope of targeted marketing where campaigns typically

solicit only a small fraction of responsive customers. This implies a different notion of model performance compared to

cost-sensitive learners, the objective of which is to minimize overall error costs [e.g., [42] . 

Finally, there is a large body of literature on predictive models for customer targeting ( Stream 3 ). Previous work has

studied all steps of the predictive modeling process, which we depict in Fig. 1 . In interpreting Fig. 1 , it is important to

note that we deliberately refrain from incorporating feedback loops. Research on data preparation includes endeavors to

build an analytic database from past campaigns and test mailings [e.g., [32] . Marketing papers in the field data preparation

examine how alternative definitions of the modeling target [e.g., [14] or covariates [e.g., [28] affect model quality. The data

transformation step has been studied through the lens of feature selection [e.g., [24] and independent variable projection

[e.g., [6] . The estimation of the actual marketing decision model, its tuning, and possible combination with other models

(i.e., ensembling) is the process step that has attracted the largest attention in prior literature [e.g., [27] and is also the

focus of this paper. Other papers study a post-processing of model prediction to enhance calibration [e.g., [5] or design new

indicators to measure the performance of a decision model [e.g., [39] . 

The majority of previous studies estimate the targeting model using standard prediction methods (neural networks, sup-

port vector machines, etc.). We call this approach profit-agnostic because it does not take account of the actual decision

context (i.e., customer targeting) and business objective (i.e., profit maximization) during model development. Only a few

studies emphasize the inability of statistical accuracy indicators to reflect marketing objectives and propose application

specific alternatives such as the (expected) maximum profit criterion for churn modeling [37,39] . We add to this research

through using a more general profit function, which enables us to study a broad range of targeting applications beyond

churn. Focusing on profit-oriented model development, we also introduce the business goal earlier in the modeling process

where corresponding information can exert more influence on the eventual model. To confirm this, we empirically compare

PCES to the approach proposed in [37] . 

To our knowledge, three studies consider a profit-oriented model development in marketing. Using a genetic algorithm

(GA), Bhattacharyya [2] estimates the parameters of a linear model so as to maximize profit. Stripling et al. [34] further

extends this approach to maximize the expected maximum profit criterion for churn modeling, while Cui et al. [7] select

customers with heterogeneous expected returns via partial ordering. PCES differs from these approaches in that it i) uses a

more advanced ensemble learning paradigm and ii) adopts a multi-stage approach to balance statistical loss and business

goals. To verify the appropriateness of this design, we empirically compare PCES to the GA-based approach of Bhattacharyya

[2] and Stripling et al. [34] . 

Finally, research in information retrieval is concerned with ranking algorithms, for example to identify the top N most

relevant search results for a query. Advanced solutions use deep learning in the form of convolutional neural networks to

optimize ranking functions directly [12] . Allocating marketing budgets in campaign planning could be framed as a ranking
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problem, so that corresponding advancements could have much potential to perform profit analytics in fundamentally new

ways. 1 

3. Methodology 

In the following, we elaborate on our methodology. First, we review the statistical fundamentals of predictive models

and explain how standard loss functions disregard application characteristics. Next, we discuss business goals in campaign

planning and corresponding objective functions. Last, we elaborate on the PCES framework, which we propose to combine

statistical and business objectives. 

3.1. Profit-agnostic targeting models 

Targeting models belong to the field of supervised learning [e.g., [17] . Assume a marketer wishes to predict the behavior

of customer i , characterized by vector x i = ( x 1 i , x 2 i , . . . , x Mi ) ∈ R 

M , where the elements of x i capture transactional and demo-

graphic information, amongst others. Let y i denote the response of customer i to a past marketing action. The response may

be continuous (e.g., purchase amount) or discrete (e.g., whether an offer was accepted). We focus on binary classification

where y i ∈ {0, 1}, with a value of y i = 1 ( y i = 0) indicating that customer i accepted (rejected) a marketing offer. A tar geting

model, f ( x ), represents a functional mapping from customer records to responses: f �(x ) : R 

M ↔ { 0 , 1 } , where � denotes a

vector of model parameters. Model estimation involves fitting model parameters to data. Afterwards, the model allows the

marketer to predict customer response (and more generally behavior) from observable customer data. 

Targeting model development follows an inductive approach: Given a data set of customer records and corresponding re-

sponses, D = ( y i , x i ) 
N 
i =1 

, a learning algorithm fits the model parameters, �, so as to minimize the deviation between model

estimates and actual responses: �′ ← min 

�
Q( y i , f �( x i ) ) ∀ i = 1 , . . . , N, where �′ denotes the optimal set of parameters

and the loss function Q measures the disagreement between model outputs and data. Therefore, model estimation is equiv-

alent to minimizing a loss function over D . A loss function represents a model-internal notion of fit. Considering the logit

model as an example, Q equals the negative log-likelihood (NLL). Common statistical loss functions (NLL, cross-entropy,

Hinge loss, etc.) implement the principles of statistical learning to ensure that a model is able to generalize to novel data.

Prediction models estimated using such loss functions are generic and can be employed in many domains. However, they

disregard specific application characteristics unless these are accurately reflected in the loss function. We argue that a close

correspondence between a model-internal internal notion of fit and business value should not be taken for granted. Maxi-

mizing fit using some statistical loss function may lead to a different model compared to maximizing campaign profit. On

the other hand, statistical loss functions have strong theoretical underpinnings and exhibit desirable properties related to

generalization [e.g., [17] . It is imperative to build on this theory when developing a prediction model. This motivates our

PCES approach to integrate statistical considerations (in the form of established loss functions and estimation principles)

and business value (in the form of campaign profit) during target model development. 

3.2. Target group selection and model assessment in marketing campaign planning 

Campaign planning aims at maximizing the efficiency of resource utilization. Contacting customers with a marketing

message entails a cost so that it is typically inefficient to target the whole customer base. Instead, marketers use targeting

models to estimate response probabilities on a customer level. This facilitates restricting solicitations to likely responders.

Applications of targeting models include the mail-order industry, churn management, and cross-selling. Recently, targeting

models are increasingly used in real-time settings such as digital marketing [e.g., [30] and social media [e.g., [21] . 

From a managerial point of view, the business value of a targeting model depends on the degree to which it increases

the profitability of targeted marketing actions. We model the profit of a marketing campaign, �, as follows [26] : 

�(l(τ ) , τ ) = N · τ · ( π+ · l(τ ) · r − c) , (1) 

where N denotes the size of the customer base, τ the fraction of targeted customers (i.e., campaign size), and π+ the base

rate of customers willing to accept the marketing offer in the customer base. The parameters r and c represent the return

and cost associated with an accepted offer and making the offer, respectively. The quantity l ( τ ), called the lift, is a marketing

specific measure of predictive accuracy, which depends on the size of the campaign, τ . With πτ denoting the fraction of

responses in the target group, the lift is given as: 

l ( τ ) = 

πτ

π+ 
(2) 

A campaign that targets customers at random reaches a fraction of π+ actual responders. Thus, the lift assesses the

degree to which a model-based targeting improves over a random benchmark. 

Revised versions of (1) have been proposed to capture the characteristics of specific marketing applications. Neslin et al.

[29] devise a profit function for models that target retention actions to customers with high churn probability. The expected
1 The authors would like to thank an anonymous reviewer for suggesting this approach toward profit analytics. 
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maximum profit criterion further refines this approach [39] . The advantage of the campaign profit function (1) over sub-

sequent advancements is generality. Connecting customer revenues, direct costs, and model accuracy through model lift,

(1) can represent a variety of targeting applications including churn management, direct mail, e-couponing, etc. Therefore,

we use (1) in this paper and leave the evaluation of the proposed PCES approach for specific targeting tasks such as churn

modeling to future work. 

An assumption of (1) and its extensions is that costs and returns are homogeneous across customers. In campaign plan-

ning, assuming constant offer costs is plausible for most marketing channels. However, disregarding variability in customer

spending ( r = const.) is a strong simplification. Typically, the returns from accepted marketing offers differ across customers.

Our justification for using (1) despite this assumption is threefold. First, it is common practice to work with class as opposed

to case depending costs/returns in the marketing and cost-sensitive learning literature [e.g., [32,37] . Second, calculating cam-

paign profit using the mean revenue per accepted offer may be more suitable for predictive modeling, for example because

information to estimate revenues at the customer level reliably is lacking. Last, some applications do not require distin-

guishing revenues across customers, for example when targeting services entail a fixed fee or when running lead generation

campaigns. 

3.3. Profit-conscious ensemble selection 

The proposed modeling framework is based on the view that the development of predictive decision support models

should pay attention to both statistical and business considerations. Therefore, we strive to incorporate campaign profit

(1) as marketing objective into model development (see Fig. 1 ). To achieve this, we decompose model development into two

sub-steps. The first stage leverages statistical learning principles. In step two, model predictions are refined to maximize

campaign profit. Recall that such multi-stage approach mimics the way in which managers use decision support models:

they re-appraise and possibly correct DSS outputs in the context of their decision task [10] . 

The proposed framework is based on a machine learning paradigm called ensemble selection [3] . An ensemble is a

collection of (base) models, all of which predict the same target. Much research confirm that combining multiple models

in an ensemble is useful to increase predictive accuracy [e.g., [37] . Ensemble selection involves three steps: (i) constructing

a library of candidate models ( model library ), (ii) selecting an “appropriate” subset of models for the ensemble ( candidate

selection ), and (iii) integrating the predictions of the chosen models into a composite forecast ( model aggregation ). From an

algorithmic point of view, PCES follows Caruana’s et al. [3] approach. Its distinctive feature is that it integrates statistical and

economic objectives. This way, PCES embodies a different paradigm toward developing predictive decision support models. 

3.3.1. Model library 

The success of an ensemble depends on the diversity of its members. To obtain a library of diverse models, we use

different learning algorithms. We also consider multiple settings for algorithmic meta-parameters. Meta-parameters such as

the regularization parameter in support vector machines facilitate adapting a learning algorithm to a task, which suggests

that prediction models from the same algorithm vary with meta-parameters and display diversity. Table 1 summarizes the

learning algorithms and meta-parameter settings in the model library. 

It is common practice to select a specific, ‘best’ set of meta-parameters for an individual learning algorithm in a model

selection step. As we detail below (see Section 4.2), we also adopt this practice to obtain benchmark models against which

we compare PCES. However, for PCES itself, we do not perform model selection a priori but keep all candidate models

in the library. The selection of algorithms and meta-parameters is based upon previous literature on customer targeting

and ensemble modeling [20,37] . Some methods have been chosen due to their popularity (e.g., logistic regression, deci-

sion trees, discriminant analysis) and others because of high performance in previous studies (e.g., random forest, support

vector machines, gradient boosting). Interested readers can find a comprehensive discussion of the algorithms in [17] . In

total, we consider 15 learning algorithms from which we derive 877 different models. We acknowledge that several exten-

sions of popular machine learning algorithms have been proposed in the literature. Innovative learners like, for example,

the fuzzy support vector machine [41] may give better results than the original version of the algorithm. Our reason to

not include corresponding techniques comes from the design goal of PCES to be easy to implement in practice. Standard

algorithms as those forming our model library are available in contemporary business analytics software such as, e.g., SAS,

Microsoft Azure ML, and many others as well as popular data science programming languages such as R, Python, Scala, etc.

or high-performance computing infrastructures like Apache Spark. Leveraging corresponding standards is beneficial because

it ensures that companies could deploy PCES at low cost and without a need to re-implement algorithms that have mainly

been used in research. The same consideration discourages an application of deep learning in this paper. 

3.3.2. Candidate selection 

Given the model library, we select candidate models using directed hill-climbing [3] . In particular, we first select the

single best candidate model from the library. To improve this model’s performance, we next assess all pairwise combinations

of the chosen model and one other base model from the library. This way, we obtain a collection of possible two-member

ensembles, out of which we select the best performing candidate ensemble. We then continue with examining the set

of all three-member ensembles that include the models chosen in the previous iteration. Incremental ensemble growing
Please cite this article as: S. Lessmann, J. Haupt and K. Coussement et al., Targeting customers for profit: An ensemble 

learning framework to support marketing decision-making, Information Sciences, https://doi.org/10.1016/j.ins.2019.05.027 

https://doi.org/10.1016/j.ins.2019.05.027


6 S. Lessmann, J. Haupt and K. Coussement et al. / Information Sciences xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: INS [m3Gsc; May 27, 2019;15:22 ] 

Table 1 

Classification methods and meta-parameter settings. 

Learning algorithm Meta-parameter ∗ Candidate settings ∗∗

Classification and regression tree Min. size of nonterminal nodes 10, 100, 10 0 0 

Recursively partitions a training data set by inducing binary splitting rules so 

as to minimize the impurity of child nodes in terms of the Gini coefficient. 

Terminal nodes are assigned a posterior class-membership probability 

according to the distribution of the classes of the training instances 

contained in this node. To classify novel instances, the splitting rules learned 

during model building are employed to determine an appropriate terminal 

node. 

Pruning of fully grown tree Yes, No 

Overall number of models: 6 

Artificial neural network No. of neurons in hidden layer 3, 4, …, 20 

Three-layered architecture of information processing-units referred to as 

neurons. Each neuron receives an input signal in the form of a weighted 

sum over the outputs of the preceding layer’s neurons. This input is 

transformed by means of a logistic function to compute the neuron’s output, 

which is passed to the next layer. The neurons of the first layer are simply 

the covariates of a classification task. The output layer consists of a single 

neuron, whose output can be interpreted as a class-membership probability. 

Building a neural network models involves determining connection weights 

by minimizing a regularized loss-function over training data. 

Regularization factor (weight 

decay) 

10 [ −4, −3.5, …, 0] 

Overall number of models: 162 

k-nearest-neighbor Number of nearest neighbors 10, 100, 150, 200, …, 500, 

10 0 0, 150 0, …40 0 0 

Decision objects are assigned a class-membership probability according to the 

class distribution prevailing among its k nearest (in terms of Euclidian 

distance) neighbors. 

Overall number of models: 18 

Linear discriminant analysis Covariates considered in the 

model 

Full model, stepwise 

variable selection with 

p-values in the range 

0.05, 0.1,…, 0.95 

Approximates class-specific probabilities by means of multivariate normal 

distributions assuming identical covariance matrices. This assumption yields 

a linear classification model, whose parameters are estimated by means of 

maximum likelihood procedures from training data. 

Overall number of models: 20 

Logistic regression Covariates considered in the 

model 

Full model, stepwise 

variable selection with 

p-values in the range 

0.05, 0.1,…, 0.95 

Approximates class membership probabilities (i.e., a posteriori probabilities) by 

means of a logistic function, whose parameters are estimated from training 

data by maximum likelihood procedures. 

Overall number of models: 20 

Naive bayes Histogram bin size 2, 3, …, 10 

Approximates class-specific probabilities under the assumption that all 

covariates are statistically independent. 

Overall number of models: 9 

Quadratic discriminant analysis Covariates considered in the 

model 

Full model, stepwise 

variable selection with 

p-values in the range 

0.05, 0.1,…, 0.95 

Differs from LDA only in terms of the assumption about the structure of the 

covariance matrix. Relaxing the assumption of identical covariance leads to a 

quadratic discriminant function. 

Overall number of models: 20 

Regularized logistic regression Regularization factor 2 [ −14, −13, …, 14] 

Differs from ordinary LogR in the objective function optimized during model 

building. A complexity penalty given by the L1-norm of model parameters 

(Lasso-penalty) is introduced to obtain a “simpler” model. 

Overall number of models: 29 

Support vector machine with linear kernel Regularization factor 2 [ −14, −13, …, 14] 

Constructs a linear boundary between training instances of adjacent classes so 

as to maximize the distance between the closest examples of opposite 

classes and achieve a pure separation of the two groups. 

Overall number of models: 29 

( continued on next page ) 
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Table 1 ( continued ) 

Learning algorithm Meta-parameter ∗ Candidate settings ∗∗

Support vector machine with radial basis function kernel Regularization factor 2 [ −12, −11, …, 12] 

Extends SVM-lin by implicitly projecting training instances to a higher 

dimensional space by means of a kernel function. The linear decision 

boundary is constructed in this transformed space, which results in a 

nonlinear classification model. 

Width of Rbf kernel function 2 [ −12, −11, …, −1] 

Overall number of models: 300 

AdaBoost No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 

50 0, 10 0 0, 150 0, 20 0 0 

Constructs an ensemble of decision trees in an incremental manner. The new 

members to be appended to the collection are built in a way to avoid the 

classification errors of the current ensemble. The ensemble prediction is 

computed as a weighted sum over the member classifiers’ predictions, 

whereby member weights follow directly from the iterative ensemble 

building mechanism. 

Overall number of models: 11 

Bagged decision trees No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 

50 0, 10 0 0, 150 0, 20 0 0 

Constructs multiple CART trees on bootstrap samples of the original training 

data. The predictions of individual members are aggregated by means of 

average aggregation. 

Overall number of models: 11 

Bagged neural networks No. of member classifiers 5, 10, 25, 50, 100 

Equivalent to BagDT but using ANN instead of CART to construct member 

classifiers. The ensemble prediction is computed as a simple average over 

member predictions. 

Overall number of models: 5 

Random forest No. of member classifiers 100, 250, 500, 750, 1000, 

150 0, 20 0 0 ∗∗∗

The ensemble consists of fully grown CART classifiers derived from bootstrap 

samples of the training data. In contrast with standard CART classifiers that 

determine splitting rules over all covariates, a subset of covariates is 

randomly drawn whenever a node is branched and the optimal split is 

determined only for these preselected variables. The additional 

randomization increases diversity among member classifiers. The ensemble 

prediction follows from average aggregation. 

No. of covariates randomly 

selected for node splitting 

Overall number of models: 35 

LogitBoost No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 

50 0, 10 0 0, 150 0, 20 0 0 

Modification of the AdaB algorithm which considers a logistic loss function 

during the incremental member construction. We employ tree-based models 

as member classifiers. 

Overall number of models: 11 

Stochastic gradient boosting No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 

50 0, 10 0 0, 150 0, 20 0 0 

Modification of the AdaB algorithm, which incorporates bootstrap sampling 

and organizes the incremental ensemble construction in a way to optimize 

the gradient of some differential loss function with respect to the present 

ensemble composition. We employ tree-based models as member classifiers. 

Overall number of models: 11 

∗ Note that Table 1 depicts only those meta-parameters for which we consider multiple settings. A classification method may offer additional meta- 

parameters. 
∗∗ We consider all possible combination of meta-parameter settings for learners such as Random Forest that exhibit multiple meta-parameters. 
∗∗∗ M represents the number of explanatory variables (i.e., covariates) in a data set. 

 

 

 

 

 

 

 

 

terminates when adding novel members stops improving performance. Interested readers find a working example of the

algorithm in the e-companion (see online Appendix I). 

We propose to reserve the selection step for business objectives. Using heuristic search, it is possible to gear ensemble

selection toward any objective function that depends on the model-estimated probabilities. In this paper, we devise an

ensemble that incorporates business objectives through maximizing (1) in the selection stage. This way, PCES refines the

first-stage predictions, which stem from well-established prediction models and embody the principles of statistical learning,

by means of a combination of predictions to better represent the actual decision problem. 

From a mathematical point of view, configuring the hill-climbing heuristic to maximize (1) appears a minor modification.

However, this modest modification leads to a fundamentally different paradigm toward prediction model development. The

campaign profit function (1) captures the business value of a decision support model and characteristics of the decision
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context such as a budget constraint (in the form of τ . Consequently, maximizing (1) leads to a contextualized model that is

aware of the environment to which it will be deployed and the decisions it is meant to support. Furthermore, an ex-post

revision of (individual model) predictions as done by PCES mimics the way in which managers use DSS recommendations

and possibly correct for misleading advice [10] . These features represent the real value of PCES and, as we suggest, warrant

a comprehensive empirical evaluation how much a contextualized modeling paradigm improves over standard supervised

learning. 

3.3.3. Model aggregation 

Model aggregation refers to a combination of models’ predictions. PCES combines predictions in the candidate selection

step (see 3.3.2). A candidate ensemble consists of a subset of base models. To assess a candidate ensemble, we compute

the simple average over the predictions of the selected base models. We detail this approach in the online appendix, which

provides a numerical example of candidate selection and PCES (see Appendix I in the online appendix). PCES performs

the same model aggregation when computing the predictions of the final ensemble, which is the specific selection of base

models that gives the best results during candidate selection. 

Although we pool models by averaging over their predictions, PCES effectively computes a weighted average. This is

because the candidate selection procedure of Caruana et al. [3] allows the same model to enter the ensemble multiple

times. The opportunity to weight predictions whenever the data suggest that a strong model deserves greater influence on

the ensemble prediction adds to the flexibility of ensemble selection. Note that averaging model predictions requires all

models to produce forecasts of a common scale. To ensure this, we calibrate base model predictions using a logistic link

function prior to model averaging [31] . 

4. Empirical design 

We examine the effectiveness of PCES in the scope of an empirical benchmark. Such experiment requires suitable data,

which represents the characteristics of customer targeting applications, and benchmark models to put the performance of

PCES into context. 

4.1. Marketing data sets 

The empirical study considers 25 cross-sectional marketing data sets. The data sets stem from different industries and

represent different prediction tasks, each of which requires selecting customers for targeted marketing actions. The main

sources from which we gather the data sets are: (i) data mining competitions, (ii) previous modeling studies, (iii) the UCI

machine learning repository [22] , and (iv) projects with industry partners. Given the large number of data sets, it is pro-

hibitive to discuss every data set in detail. Table 2 summarizes data set characteristics and identifies sources where more

information is available. Every data set has been recorded at a given point in time. Accordingly, variable values give a snap-

shot of the state of a customer but provide no information how a variable, say customer spending, has evolved over time.

For this reason, we do not consider sequence learning algorithms such as recurrent neural networks in this paper. 

To simulate a real-world campaign planning setting, we randomly split data sets into two samples using a ratio of 60:40.

We refer to the two samples as the training set and the test set, respectively. We develop targeting models using the training

set and assess fully specified models on the test set. Certain modeling choices within PCES and the benchmark models

(see below) require auxiliary validation data. Examples include the identification of the best base model in the library (as

benchmark to PCES) and the heuristic search for ensemble members in the second stage of PCES. We obtain such validation

data by means of five-fold cross validation on the training set [3] . 

4.2. Benchmark models 

Alternative targeting models represent a natural benchmark to the proposed PCES approach. We consider (i) the well-

known logit model, due to its popularity in marketing, (ii) random forest, due to its success in previous benchmarking

studies [e.g., [20,37] , and (iii) a best base model (BBM) benchmark, which is given by the strongest individual targeting

model from the model library. A common denominator among these benchmarks is that they account for the problem con-

text during model selection . For each marketing data set, we select among the 20 / 35 / 877 candidate logit / random forest

/ base models (see Table 1 ) the one giving maximal campaign profit (1) . Prior work finds a selection of prediction models

using business performance measures to substantially improve decision quality [e.g., [14,37,38] . Therefore, we expect the

benchmarks to be challenging. To further elaborate on our approach toward benchmark selection, recall that our model li-

brary includes multiple models for each learning algorithm, which we derive from executing the algorithm with different

settings for algorithmic meta-parameters (see Table 1 ). We select the logit and random forest benchmarks among all logit

and random forest models in the model library for each data set and for each experimental setting. For example, we con-

sider multiple cost-to-benefit ratios and examine model performance across these ratios on each data set. We also consider

different mailing depths. In the interest of obtaining a challenging benchmark, we select the strongest logit/random forest

model for each setting and data set individually. We proceed in the same way to select the BBM, this time, however not

selecting the benchmark model only among candidate logit / random forest models but all models in the library. 
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Table 2 

Data sets characteristics. 

Data set Marketing objective Industry Source ∗ Observations Variables P( + 1) ∗∗

D1 Churn prediction Energy DMC02 20,0 0 0 32 0.10 

D2 Churn prediction Finance CP 155,056 23 0.14 

D3 Churn prediction Finance CP 30,104 47 0.04 

D4 Churn prediction Telco [37] 40,0 0 0 70 0.50 

D5 Churn prediction Telco [37] 93,893 196 0.50 

D6 Churn prediction Telco [37] 12,410 18 0.39 

D7 Churn prediction Telco [37] 69,309 67 0.29 

D8 Churn prediction Telco [37] 21,143 384 0.12 

D9 Churn prediction Telco KDD09 50,0 0 0 301 0.07 

D10 Churn prediction Telco [37] 47,761 41 0.04 

D11 Churn prediction Telco [37] 50 0 0 18 0.14 

D12 Profitability scoring E-Commerce DMC05 50,0 0 0 119 0.06 

D13 Profitability scoring E-Commerce DMC06 16,0 0 0 24 0.49 

D14 Profitability scoring Mail-order UCI-Adult 48,842 17 0.24 

D15 Profitability scoring Mail-order DMC04 40,292 107 0.21 

D16 Response modeling Charity KDD98 191,779 43 0.05 

D17 Response modeling E-Commerce CP 121,511 82 0.06 

D18 Response modeling E-Commerce CP 214,709 77 0.13 

D19 Response modeling E-Commerce CP 382,697 76 0.09 

D20 Response modeling E-Commerce DMC10 32,428 40 0.19 

D21 Response modeling Finance CP 45,211 16 0.12 

D22 Response modeling Finance UCI-Coil 9822 13 0.06 

D23 Response modeling Mail-order DMC01 28,128 106 0.50 

D24 Response modeling Publishing CP 30 0,0 0 0 30 0.01 

D25 Response modeling Retail DMC07 10 0,0 0 0 17 0.24 

∗ CP = consultancy project with industry; DMC = Data Mining Cup ( http://www.data- mining- cup.com ) 

(the number gives the year of the competition); KDD = ACM KDD Cup( http://www.sigkdd.org/kddcup/index. 

php ) (the number gives the year of the competition); UCI-xxx = UCI Machine Learning Repository( http: 

//archive.ics.uci.edu/ml/ ) (with xxx being the name of the data set in the repository). 
∗∗ P( + 1) denotes the prior probability of response (e.g., the fraction of customers who accept an offer). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ensemble selection approach of Caruana et al. [3] contributes a fourth benchmark. Here, we call it profit-agnostic en-

semble selection (PAES) and employ a statistical loss function (i.e., NNL) for base model selection. Therefore, PAES and PCES

differ in their approach to select base models for the final ensemble in a profit-agnostic as opposed to a profit-conscious

manner. This configuration allows us to attribute performance differences between PAES and PCES to the fact that the latter

accounts for business performance during model development. 

The last benchmark draws inspiration from Bhattacharyya [2] . It optimizes the coefficients of a linear regression function,

which discriminates between responsive and non-responsive customers, using a genetic algorithm (GA). We use (1) as fitness

function implying that the GA maximizes campaign profit. Focusing exclusively on business goals during model development,

GA is a useful benchmark to support the design of PCES as an integrated modeling framework that balances statistical and

economic considerations. GAs exhibit meta-parameters such as the size of the population, the specific type of crossover

operator or the mutation rate. In configuring the GA benchmark, we rely on Bhattacharyya [2] and use their settings of

population size = 50, crossover rate = 0.7, and mutation rate = 0.2. 

4.3. Configuration of ensemble selection 

Caruana et al. [3] propose some modifications of basic ensemble selection. One extension consists of an additional bag-

ging step. Instead of selecting a single set of base models from the full model library, they subsample the library, select

one ensemble from each subsample, and average over the resulting ensembles [3] . The basic and bagged ensemble selection

algorithms represent alternative strategies to develop a model. We consider both strategies and determine the superior ap-

proach for each data set by means of model selection. For bagged ensemble selection, we consider subsample sizes of 5%,

10%, and 20% of the model library and 5, 10, and 25 bagging iterations. Importantly, PAES and PCES are treated in the same

way to avoid bias. 

5. Empirical results 

The experimental design provides test set predictions from PCES and benchmark models across the marketing data sets.

Many indicators are available to assess predictive accuracy. We suggest that a comparison in terms of business performance

is most meaningful from a managerial point of view and thus assess targeting models in terms of campaign profit (1) . 

Recall that (1) is a function of campaign size, τ . In the following, we consider τ a decision variable and let a targeting

model find the profit maximal solution to (1) over l ( τ ) and τ . This implies that the model determines which and how

many customers to target and thus how much to spend on the campaign. Verbeke et al. [37] recommend this approach and
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Table 3 

Win-tie-loss statistics of PCES versus benchmarks in the flexible budget case. 

PCES vs. Logit PCES vs. RF PCES vs. BBM PCES vs. GA PCES vs. PAES 

Return ( r ) Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss 

$2 24 1 0 21 2 2 22 1 2 25 0 0 19 3 3 

$3 24 0 1 21 1 3 22 1 2 25 0 0 22 0 3 

$4 25 0 0 24 0 1 21 1 3 25 0 0 20 0 5 

$5 25 0 0 23 1 1 23 1 1 24 1 0 20 0 5 

$10 24 0 1 24 0 1 22 0 3 24 0 1 18 0 7 

$15 24 0 1 23 0 2 18 0 7 24 0 1 12 0 13 

$20 24 0 1 23 0 2 22 0 3 24 0 1 17 0 8 

$25 24 0 1 24 0 1 23 0 2 23 0 2 16 1 8 

$50 23 0 2 23 0 2 22 0 3 24 0 1 16 0 9 

$75 23 0 2 21 1 3 21 0 4 24 0 1 13 0 12 

$100 23 0 2 19 1 5 20 0 5 23 1 1 11 1 13 

Total 263 1 11 246 6 23 236 4 35 265 2 8 184 5 86 

96% 0% 4% 89% 2% 8% 86% 1% 13% 96% 1% 3% 67% 2% 31% 

p-value ∗ 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 

∗ The p -values correspond to pairwise comparisons of PCES and one benchmark, using Rom’s procedure to protect against an 

elevation of alpha values in multiple pairwise comparisons [11] . Multiple pairwise comparisons are feasible since a X 2 value of 

823.5 suggest that we can reject the null hypothesis of equal performance among models (Friedman test) with high confidence 

( p -value < 0.0 0 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proof its effectiveness. We follow their advice but consider a different profit function to cover a larger scope of marketing

applications. 

To cover a broad range of application scenarios, we consider multiple settings for the monetary campaign parameters

offer cost ( c ) and return per accepted offer ( r ). More specifically, it is sufficient to vary r because the profit function (1) is

invariant to a linear scaling. Rescaling (1) such that c = 1 and r ’ = r/c does not change the profit maximal solution. We

thus fix c at $1 and consider settings of r = $2, $3, $5, $10, $15, $25, $50, $75, and $100. These values capture a range

of targeting applications. Smaller values represent settings where the ratio between offer cost and return per accept is

moderately skewed. Such scenario might occur when companies contact customers through a call-center or when selling

products by means of printed catalogs in the mail-order industry. Both channels involve considerable offer costs (e.g., to

produce a premium catalog), which could explain moderate imbalance between r and c . High skewness between these

parameters arises in online marketing where digital channels facilitate reaching customers at very low costs. Larger values

of r capture such applications. Overall, considering 25 marketing data sets with 11 settings for the cost-to-benefit ratio, r/c ,

we obtain 275 experimental settings. To carry out profit optimization, we run PCES as well as the PAES and GA benchmark

for each of these settings individually. For the logit, random forest and BBM benchmark, we use the models stored in the

model library and respectively select the best logit, random forest, and base model for each experimental setting. Given that

larger values of r give an incentive to increase campaign size, we constrain the optimization of (1) such that τ ≤ 0.5. Since

marketing campaigns typically target a small fraction of customers, contacting more than half of the customer base seems

unrealistic. 

Table 3 reports the win-tie-loss statistics of PCES vs. benchmark models for the 11 (return to cost ratios) ∗ 25 (data

sets) = 275 comparisons. Consider, for example, the comparison of PCES versus BBM at r = $2. A value of 22 suggests that

PCES achieves higher campaign profit than BBM on 22 out of 25 data sets. BBM outperforms PCES on two data sets and

both models tie on one data set. We also compare the statistical significance of profit differences using the Friedman test

(see bottom of Table 3 ). For the results of Table 3 , a X 

2 value of 823.5 indicates that we can reject the null hypothesis

of equal performance (p-value < 0.0 0 0). This allows us to proceed with a set of pairwise comparisons of PCES against one

benchmark to detect significant differences among individual targeting models. To protect against an elevation of alpha

values in multiple pairwise comparisons, we adjust p-values using Rom’s procedure [11] . The last row of Table 3 reports the

adjusted p-values. 

Table 3 reveals evidence that PCES produces significantly higher campaign profits than any of the benchmark models ( p -

values of pairwise comparisons consistently less than 0.0 0 0). Recall that the purpose of the logit, RF, and BBM benchmark

is to reflect common marketing practices where a set of candidate models is developed and the strongest candidate (in

terms of (1) ) is selected. This is exactly the modeling paradigm advocated in previous studies [e.g., [14,37,39] . Accordingly,

the results of Table 3 indicate that introducing the relevant notion of model performance during model development (as

opposed to model selection) further increases performance. However, this interpretation requires further qualification since 

the superiority of PCES may also come from the ability of ensemble selection to create powerful prediction models. Indeed,

the PAES benchmark, an ordinary ensemble selection method, turns out to be the strongest benchmark. However, although

benefitting from the same large base model library as PCES, a PAES-based customer targeting gives significantly less profit

compared to using PCES. In particular, we find the latter to produces higher profits in 184 out of 275 comparisons (67%). Be-
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Table 4 

Comparison of campaign profit at model-optimized campaign sizes. 

Campaign profit [$] 

Data Logit RF BBM GA PAES PCES 

D1 1660 1596 1764 1532 1874 1846 

D2 61,612 75,816 75,989 62,953 75,725 76,001 

D3 −2 −83 88 −104 76 137 

D4 −2992 −2832 −2832 −3052 −2852 26 

D5 −7096 −6766 −6766 −7096 −6666 25 

D6 −1017 −997 −977 −1027 −997 159 

D7 35,578 39,598 39,778 35,098 40,408 40,618 

D8 2966 2926 3270 2756 3404 3121 

D9 699 469 862 509 999 1139 

D10 442 876 839 590 901 984 

D11 1491 20 0 0 2022 1534 2020 2058 

D12 −8 17 −33 −310 84 428 

D13 14,700 18,270 18,270 15,110 18,390 18,810 

D14 34,421 34,755 35,067 34,385 35,107 35,185 

D15 21,642 21,842 22,012 21,353 21,982 21,073 

D16 572 6 572 208 527 726 

D17 9121 9283 9690 9568 10,690 10,087 

D18 64,096 101,186 105,824 63,438 105,649 106,418 

D19 85,123 119,158 122,949 91,387 123,881 123,804 

D20 10,424 10,614 10,564 9954 10,654 10,884 

D21 12,877 14,534 14,632 12,708 14,498 14,725 

D22 210 323 325 242 305 357 

D23 29,044 29,544 30,154 28,454 30,074 30,004 

D24 −1 −2 14 1 13 27 

D25 47,440 53,210 53,210 50,380 53,770 53,660 

Estimated profit increase (in percent) ∗ 657 (22%) 407 (14%) 233 (7%) 756 (27%) 178 (5%) 

∗ The estimation is based on García et al. [11] . We first use their contrast estimation approach to calculate the expected 

profit improvement of PCES over a benchmark, and then convert this contrast to a percentage through dividing by the 

benchmark’s median (across data sets) campaign profit . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fore examining the relative performance of alternative targeting models in more detail, we note that PCES also outperforms

the GA benchmark (i.e., a direct profit maximization) with substantial margin. 

To obtain a clearer view on the degree to which PCES increases business performance, we calculate the profit implication

resulting from using PCES or a benchmark model for campaign targeting. In particular, we consider a fictitious company with

a customer base of N = 10 0,0 0 0 customers; and let the per-customer return from accepted offers, r , and offer costs to contact

customers, c, be $10 and $1, respectively. Table 4 depicts the campaign profits emerging from a model-based targeting

per marketing data set. Given that we consider campaign size a decision variable, we let every targeting model select its

individually best setting τ . This way, Table 4 compares targeting models in terms of the maximal campaign profit they can

produce for given r and c . Bold face highlights the best result per data set. The optimized campaign sizes corresponding

to the results of Table 4 are available in Table 5 . The last row of Table 4 summarizes the observed results in the form

of an estimate of the expected profit increase of PCES over a benchmark. The estimation procedure comes from García

et al. [11] and is based on the median profit difference between PCES and a benchmark model across the data sets. Given

the scope of the empirical study (e.g., 25 real-world data sets from different industries), we consider the resulting value a

reliable estimate of the profit that a targeting model achieves on unseen data. 

Table 4 reemphasizes that PCES typically produces higher profits than benchmark models. This is especially apparent

when examining the performance contrast shown in the last row of Table 4 . Based on the observed results, we expect PCES

to increase campaign profit by five percent compared to the most challenging benchmark and up to fourteen percent com-

pared to random forest, a state-of-the-art classifier much credited for high accuracy [e.g., [20] . Profit increases of five percent

and above are managerially meaningful, especially for larger companies and companies that run many campaigns [29] . It is

also noteworthy that using the logit model for targeting, an approach still popular in industry, entails substantial opportu-

nity costs. Compared to this benchmark, PCES produces higher campaign profits across all data sets and can be expected

to increase profits by 22% on average. With respect to a direct optimization of campaign profit during model development,

which the GA benchmark embodies, Table 4 reveals that corresponding results are the weakest in the comparison. Last, PCES

is the only approach that avoids losses. For some data sets (e.g., D4–D6) the optimization of τ on validation data gives a poor

result for the hold-out test data on which we calculate campaign profit. In particular, Table 5 reveals that all benchmarks

select τ equal to its upper bound of 0.5 on D4–D6. This leads to large campaigns that result in a loss for the given setting

of r : c = 10:1. PCES, on the other hand, benefits from its ability to adapt the ensemble forecast when optimizing τ , because

it employs (1) during model development. This allows PCES to recognize that the level of predictive accuracy vis-à-vis the

return to cost ratio might not facilitate profitable targeting. Thus, PCES selects τ close to zero. Finally, Table 5 evidences a

trend of PCES to recommend smaller campaigns. The median value τ = 16.66 for PCES is much less than the second-smallest
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Table 5 

Model-optimized campaign sizes. 

Model-optimized campaign sizes [%] 

Data Logit RF BBM GA PAES PCES 

D1 41.12 4 9.6 8 35.58 40.09 38.20 43.18 

D2 25.78 16.21 15.67 26.15 15.49 15.86 

D3 0.35 6.67 4.33 4.01 7.25 4.76 

D4 50.00 50.00 50.00 50.00 50.00 0.17 

D5 50.00 50.00 50.00 50.00 50.00 0.34 

D6 50.00 50.00 50.00 50.00 50.00 1.97 

D7 50.00 50.00 50.00 50.00 50.00 50.00 

D8 46.16 47.70 46.34 46.87 49.26 50.00 

D9 7.70 12.70 16.04 13.20 23.10 16.96 

D10 5.07 6.56 5.81 5.44 7.69 5.74 

D11 38.43 15.47 14.40 39.77 14.00 15.10 

D12 14.14 15.26 17.36 12.35 16.18 7.86 

D13 50.00 50.00 50.00 50.00 50.00 50.00 

D14 48.52 49.62 48.59 49.83 48.85 47.68 

D15 50.00 50.00 50.00 49.93 50.00 45.34 

D16 3.83 0.03 3.83 0.71 2.57 4.27 

D17 22.04 17.39 17.61 15.44 19.52 16.66 

D18 36.83 20.09 17.74 35.45 17.56 17.03 

D19 19.52 13.03 12.14 18.99 12.55 12.04 

D20 50.00 50.00 50.00 50.00 50.00 50.00 

D21 28.99 25.47 26.97 30.64 25.78 27.95 

D22 23.65 15.44 14.63 18.51 23.02 10.77 

D23 50.00 50.00 50.00 50.00 50.00 50.00 

D24 0.00 0.01 0.04 0.06 0.04 0.04 

D25 50.00 50.00 50.00 50.00 50.00 50.00 

Median 38.43 25.47 26.97 39.77 25.78 16.66 

Fig. 2. Expected percentage improvement in campaign profit due to using PCES for target group selection. We estimate profit contrasts in the same way 

as in Table 4 . Panel (a) shows all settings of r , whereas panel (b) focuses on settings of r > 5 for better readability. 

 

 

 

 

 

 

 

 

 

value of τ = 25.47 for RF. Smaller campaigns are appealing since they require less resources and might be better targeted

to customer interests. For example, despite recommending smaller campaigns, PCES produces higher profits than RF on all

data sets, which signals higher predictive accuracy and, in turn, better targeting. 

The results of Tables 4 and 5 stem from a campaign with specific setting of returns and offer costs. To confirm general-

izability of results to other campaign settings, we next examine the magnitude of PCES-induced profit improvements across

the full range of campaign parameters r = $2, $3, $5, $10, $15, $25, $50, $75, and $100 (with c = $1). To that end, we rerun

model development (for PCES and GA) and model selection (logit, RF, BBM, PAES) for all data sets and settings of r. We

then use the same contrast estimation approach (see last row Table 4 ) to calculate percentage profit improvements of PCES

over its benchmarks [11] . Fig. 2 depicts the corresponding results. Given that smaller settings of r lead to large improve-

ments over weaker benchmarks, we split Fig. 2 into two panels which show results for all settings of r and those above five,

respectively. 
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Fig. 2 confirms that superior performance of PCES generalizes to other settings of campaign parameters. Above zero

improvements demonstrate that PCES consistently produces higher profits than the benchmarks. GA is again the weakest

benchmark in the comparison. Even in the scenario r:c = 100:1, where high imbalance between marketing returns and costs

renders the targeting task relatively easy, PCES increases campaign profits by more than five percent compared to GA. This

confirms that direct maximization of campaign profits is not a suitable approach to develop targeting models. The other

models ground on statistical learning. From Fig. 2 , we conclude that following corresponding principles is essential when

developing a targeting model. However, the specific adaptation that we propose, namely to introduce campaign profits into

model development, succeeds in improving the business performance of the resulting model. Random forest, for example,

recommends campaigns that are roughly 3–15% less profitable compared to PCES. 

6. Discussion 

The empirical analysis evidences the effectiveness of the proposed approach toward model development. Our study also

sheds light on the divergence between the optimization of statistical loss and business objectives for prediction model

development in targeting applications. The experimental design includes three philosophies toward model development: (i)

a direct maximization of business performance (GA), (ii) a model selection approach, which introduces business objectives

ex-post and develops models using statistical learning (Logit, RF, BBM and PAES), and (iii) PCES that shifts the consideration

of the actual business objective to a previous modeling stage to gear model development toward the ultimate goal of the

marketing campaign. 

We find the direct approach to be least effective. Even a simple logit model outperforms GA. The logit and GA model

both construct a linear classifier. Better performance of the former evidences that model development through minimizing

statistical loss is preferable to a direct maximization of business performance. Well-known estimation problems such as

overfitting [e.g., [17] are a likely cause of this result. Remedies to such problems are available in statistical learning. However,

developing predictive models through profit maximization, the direct approach is unable to capitalize on this knowledge. 

Considering the model selection approach, logistic regression, random forest, and BBM perform better than GA but infe-

rior to PCES. Profit improvements over these benchmarks are often substantial. On average, PCES also recommends smaller

campaigns, which indicates better targeting of PCES campaigns. Overall, these results suggest that incorporating business

goals early in the modeling process has a sizeable positive effect on the quality of the prediction model and decision sup-

port, respectively. 

One might object that a targeting model that is tuned to maximize profits will naturally give higher profits than a

model that minimizes NLL or another loss function. Following this line of reasoning, one might question the fairness of the

comparison in terms of campaign profit (1) . However, it is important to recall that targeting is a prediction problem. We

aim at predicting customer responses to marketing messages. In predictive modeling, it is crucial to develop a model on one

set of (training) data and test it on a different, ‘fresh’ set of (test) data [e.g., [33] . Given disjoint data sets for model training

and evaluation, it is wrong to assume that maximizing profit on the training set will naturally give higher profit on the test

set. This is apparent from the poor results of the GA benchmark and, more importantly, statistical learning theory [e.g., [36] .

Consequently, the experimental design facilitates a fair comparison. 

However, it is still interesting to examine the performance of PCES across different evaluation measures to shed lights

on the antecedents of its success in the above comparison. In particular, maximizing campaign profit (1) over l ( τ ) and

τ , our evaluation criterion differs notably from typical accuracy indicators and statistical loss functions. We hypothesize

that the advantage of PCES over benchmark models decreases when the ensemble selection criterion (i.e., business per-

formance measure) is more similar to the loss functions that standard targeting models embody. To test this, the paper

is accompanied by an e-companion, which provides results for additional performance measures; namely AUC and TDL

(online Appendix II) and campaign profit under a budget constraint (online Appendix III 7 ). With respect to the similarity

of these measures to standard indicators of predictive accuracy and statistical loss, we suggest an ordering of the form

AUC ≺ T DL ≺ �( l( τ ) , τ = const. ) ≺ �( l( τ ) , τ ) . AUC captures a classifier’s ranking performance. It is a standard accuracy in-

dicator, which we consider relatively closest to standard loss functions like NLL [1] . TDL is related to AUC but focuses on

ranking performance among of subset of customers [e.g., [29] . Thus, we consider it more distinct from model-internal loss

functions. The same logic applies to campaign profit under a budget constrain ( �( l( τ ) , τ = const. ) ), just that this measure,

in addition, depends on cost and benefit parameters which introduce further differences. Last, the evaluation measure we

consider above, campaign profit with flexible marketing budget, �( l ( τ ), τ ), includes the additional decision variable τ and

is therefore most distinct from NLL or other standard loss functions. 

Below, we summarize results from the e-companion and illustrate how the relative performance advantage of PCES de-

velops across different performance measures. In particular, Table 6 reports the estimated performance improvement over a

benchmark model across AUC, TDL, and campaign profit with fixed and flexible budget, whereby we use the same approach

toward performance contrast estimation as in Table 4 [11] . The e-companion provides a more detailed analysis of AUC, TDL

performance in Appendix II, and campaign profit with budget constraint in Appendix III. 

Table 6 supports the view that PCES is most effective if an application specific (business) performance measure embod-

ies a different notion of model performance than a model-internal loss function. Performance improvements are especially

pronounced when assessing model performance in terms of campaign profit with flexible budget. On the other hand, im-

provements over the strongest competitor, PAES, vanish when using the AUC for performance evaluation, and are marginal
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Table 6 

Comparison of PCES and benchmarks across statistical and mone- 

tary performance measures . 

AUC TDL �( l(τ ) , τ = const. ) �( l ( τ ), τ ) 

Logit 7.31% 25.79% 18.10% 22.00% 

RF 1.39% 3.58% 2.30% 14.00% 

BBM 0.28% 3.10% 1.00% 7.00% 

GA 6.23% 21.91% 15.60% 27.00% 

PAES 0.00% 0.14% 0.30% 5.00% 

We compute the relative performance improvements of PCES over 

benchmarks in the same way as in Table 4 using the contrast es- 

timation approach of García, et al. [11] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for TDL and campaign profit under a budget constraint. The results for other benchmarks follow a similar trend, whereby

PCES still provides a sizeable advantage in most cases. Overall, we take Table 6 as further evidence that incorporating profit

consideration into model development is valuable. More specifically, the efficacy of PCES increases with decreasing similarity

between a targeting model’s internal loss function and a relevant measure of business performance. 

7. Summary 

We set out to develop a modeling approach that integrates principles of statistical learning with business objectives in

customer targeting. To achieve this, we propose PCES, which first estimates a set of statistical prediction models and then

selects from this library a subset of models so as to maximize campaign profit. The results that we obtain from a com-

prehensive empirical study confirm the effectiveness of this approach. We observe PCES to predict customer responsiveness

more accurately than benchmarks and show that the profit of a marketing campaign increases when using PCES for target

group selection. We also find this advantage over competitors to increase with decreasing correlation between a model-

internal loss function and a relevant measure of business performance. 

7.1. Implications 

The results of our study have several implications. First, integrating business goals into the modeling process is inter-

esting from a theoretical point of view. A large number of prediction methods have been developed in the literature. Well-

grounded in the theory of statistical learning, such methods facilitate the development of empirical prediction models in

diverse application settings. Generality, however, has a cost. General purpose methods disregard the characteristic proper-

ties of specific applications such as profit in campaign planning. On the other end, a common approach toward decision

support in the literature involves the development of tailor-made models that fully reflect the requirements of a given ap-

plication. However, tailor-made models also suffer limitations. In the case of predictive modeling, a possible shortcoming

may be that they are less accurate, for example because they fail to automatically account for nonlinear patterns. We con-

sider our results a stimulus to rethink approaches to develop prediction models. In particular, we call for the development

of modeling methodologies that are both widely applicable and aware of characteristic application requirements. To some

extent, the proposed PCES framework is such an approach. For example, to adapt PCES to a decision problem other than

targeting, we can replace the campaign profit function (1) , which guides ensemble member selection, with an objective

function that captures the peculiarities of the novel business application. 

Second, from a managerial perspective, the key question is to what extent novel targeting models add to the bottom

line. In this sense, an implication of our study is that it is feasible and effective to develop targeting models in a profit-

conscious manner. Improvements of campaign profit of several percent, which we observe in many experimental settings,

are managerially meaningful and indicate that PCES is a useful addition to campaign planners’ toolset. Its application seems

especially rewarding in settings where companies contact a large number of customers, conduct many campaigns, and/or

run campaigns with high frequency, all of which is common in digital marketing and e-commerce. 

A third implication of the study is related to the way in which targeting models are commonly employed in academia

and industry. In particular, a model selection approach, which involves developing a set of candidate models and selecting

one best model for deployment should be avoided. Our study suggests that an appropriately chosen combination of (some

of these) alternative models using ensemble selection is likely to increase predictive accuracy and, more generally, model

performance. Furthermore, introducing an additional selection and combination step into the modeling process provides an

excellent opportunity to account for business objectives during model development. 

Finally, a fourth implication is that the development of targeting models requires little human intervention. Typical mod-

eling tasks include, for example, testing different variables, transformations of variables to increase their predictive value,

and testing alternative prediction methods. Using an ensemble selection framework, campaign managers can easily auto-

mate these tasks. They only need to incorporate the candidate models that represent choice alternatives into the model

library. The selection strategy will then pick the most beneficial model combination in a profit-conscious manner. This frees

campaign planners from laborious, repetitive modeling tasks and unlocks valuable resources, which can be spend on tasks
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that truly require creativity and domain knowledge. In the case of predictive modeling, engineering informative features is

a good example for such task. 

7.2. Limitations and future research 

Clearly, the study exhibits limitations that open up avenues for further research. Most importantly, we do not account for

heterogeneity among customer values. We examine a range of settings in which the return per accepted offer differ. How-

ever, the return is always the same across customers. Given that customer spending differs in many practical applications,

it is important to examine customer-dependent returns in future research. Future research could also extend the proposed

modeling framework. In particular, PCES is a black-box approach that does not reveal how customer characteristics influence

predictions. Such insight is important to understand which factors determine customers’ reactions toward marketing offers.

Therefore, developing approaches that unlock the PCES black-box and clarify how variables influence predictions seems to

be a fruitful avenue for future research. 

Finally, our study does not consider deep learning. This may seem surprising because deep learning methods have

achieved excellent results, especially when processing unstructured data in computer vision and text analysis [19] . While

some corresponding studies display much relevance for marketing, for example approaches to recommend tags for images

[13] or to extract consumer sentiment from written text [18] , it seems fair to conclude that research on the suitability of

deep learning for core marketing areas is yet scarce. In this regard, examining the suitability of deep learning for customer

targeting appears an interesting avenue for future research. However, the popular deep learning architectures convolutional

and recurrent neural networks are particularly suitable for processing multi-dimensional data structures such as images

(multiple images each of which consists of multiple pixels each of which has multiple color channels) or texts (multiple

documents each of which consists of multiple words, each of which is projected to a multi-dimensional embedding space),

and appear less appropriate for the cross-sectional data we employ here and that prevails in the literature on customer

targeting [e.g., [27] . For example, tabular data with two dimensions, observations and features, does not exhibit a sequential

structure, which discourages application of recurrent networks. Similarly, the filtering operation in convolutional networks

is not readily applicable when working with “flat tables”. In view of this, future research on deep learning-based targeting

would benefit from multi-dimensional input data where the values of individual features are available over time. Until cor-

responding results become available, interested readers find a preliminary analysis of a deep network with our data sets in

the online appendix that accompanies this paper. For these data sets, we find PCES to perform significantly and substantially

better than a deep learning benchmark. 
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